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Abstract: Generalist imitation learning policies trained on large datasets show
great promise for solving diverse manipulation tasks. However, to ensure gener-
alization to different conditions, policies need to be trained with data collected
across a large set of environmental factor variations (e.g., camera pose, table
height, distractors) — a prohibitively expensive undertaking, if done exhaustively.
We introduce a principled method for deciding what data to collect and how much
to collect for each factor by constructing factored scaling curves (FSC), which
quantify how policy performance varies as data scales along individual or paired
factors. These curves enable targeted data acquisition for the most influential fac-
tor combinations within a given budget. We evaluate the proposed method through
extensive simulated and real-world experiments, across both training-from-scratch
and fine-tuning settings, and show that it boosts success rates in real-world tasks in
new environments by up to 26% over existing data-collection strategies. We fur-
ther demonstrate how factored scaling curves can effectively guide data collection
using an offline metric, without requiring real-world evaluation at scale.
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Figure 1: To efficiently collect demonstrations so as to maximize policy performance under a fixed data bud-
get, we propose factored scaling curves: a principled tool to quantify how policy performance changes with
the quantity of factor data. Based on factored scaling curves, we can allocate the data budget to collecting
demonstrations that vary different factors based on their importance.

1 Introduction

High-quality teleoperated data has been indispensable for learning many of today’s state-of-the-art
robot manipulation policies [1-5]. However, robot data collection is prohibitive in time and effort,
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often requiring more than thousands of hours of human demonstrations [2, 4]. Even with large-
scale pre-training on existing datasets [6-9], achieving strong performance in downstream tasks
still requires additional in-domain data collection, ranging from a couple of hours to hundreds of
hours of effort [2, 10]. For a learned policy to generalize effectively, data collection must also span
various environment factor variations, such as differences in table height, object initial state, and
camera pose — this exacerbates the overall effort as collecting data across diverse environment
variations requires repeatedly setting up distinct scenarios. Given the substantial data requirements
and the high expense of data acquisition, practitioners need an efficient strategy that optimizes policy
performance while minimizing human effort and cost.

To this end, we aim to address the question: given a constrained data budget, which data should be
collected to achieve the best policy generalization across varying environmental factor variations
(e.g., lighting, backgrounds, camera pose, table height)? A naive approach might evenly distribute
the data budget across all factors, but this is rarely efficient. Not only are there significant hid-
den costs associated with setting up diverse scenes, but more crucially, the policy’s sensitivity to
each factor often varies considerably. For instance, if the policy is already robust to camera-pose
variations, collecting additional camera-pose demonstrations may provide little incremental benefit,
whereas varying table height instead could significantly boost performance. An effective data col-
lection strategy should prioritize the most impactful factors, and also quantitatively determine the
appropriate amount of data to collect for each.

In light of this, we propose a novel framework to systematically prioritize data collection for improv-
ing policy generalization across environmental factors. At the core of our approach is the concept
of factored scaling curves, which model how a policy’s performance improves as additional data is
collected involving different factor variations, as shown in Fig. 1. By estimating and extrapolating
these curves, we can strategically allocate a constrained data budget to the most impactful factors,
rather than relying on uniform or heuristic-driven collection.

Statement of Contributions. We propose a principled robot data collection framework informed
by factored scaling curves. Our contributions are as follows: (1) We introduce factored scaling
curves (FSC) to quantify how policy performance scales with data for different environmental fac-
tors, and show that these curves reliably predict expected policy performance. (2) Building on these
curves, we propose a suite of data collection strategies, including top-1 and weighted top-k selec-
tion methods that prioritize factors expected to yield the greatest policy performance gains. (3)
We validate our framework through extensive experiments in both simulation and real-world robotic
manipulation tasks, where we train policies from scratch and fine-tune pre-trained Vision-Language-
Action (VLA) models, achieving up to 26 % higher success rate than state-of-the-art baselines. (4)
We further demonstrate that constructing FSC solely from policy embedding similarity — an of-
fline metric that does not require hardware evaluation — retains almost the same effectiveness in
guiding data collection, yielding an extremely lightweight variant of our method. Importantly, each
contribution of our framework is general: it applies to any task and any policy backbone, and can be
seamlessly and effectively integrated with existing data collection techniques such as compositional
data generation [11].

2 Related Work

Theoretical Frameworks for Data Collection. Several existing works study dataset construction
for improved learning dynamics. For static datasets, coreset selection, optimization, and heuristic
tuning [8, 12—17] find optimal data subsets from larger training sets. However, these approaches
assume a fixed, static dataset. By contrast, our objective is to actively decide what additional data
to gather, akin to active data allocation and learning methods including Bayesian experimental de-
sign [18, 19], information gain maximization [20, 21], and active learning [22]. In general, the first
two methods require explicit parametric representations of the estimation problem, while the third
only chooses the best single arm (i.e., factor). By contrast, our setting seeks to find the best data
mixture without overly strong assumptions about the influence mechanism. Additionally, the lat-



ter methods often give guarantees via reductions to estimation problems (e.g., [23]) which do not
account for the full endogeneity of policy performance with respect to new data generation.

Scaling Laws. Scaling laws quantify model performance improvements with increasing data and
compute. Scaling laws have been heavily studied in natural language processing (NLP) [24-28] and
computer vision [29-32], and have seen preliminary investigations in robotics [5, 7, 8, 33—36]. These
scaling analyses typically characterize the large-data regime and treat all data as a single category.
Our approach instead targets the small-data regime and extrapolates scaling curves that quantify the
marginal value of adding data for different factor variations. This allows for fine-grained analysis to
predict which factors will most improve performance.

Data Collection Strategies in Robotics. Prior methods offer broad recommendations for collecting
higher-quality real-world data [11, 37], but these guidelines remain agnostic to the specific task and
policy at hand. A complementary line of research targets efficiency by probing a policy’s failure
modes — through shared-autonomy corrections or compatibility-based selection to gather more in-
formative demonstrations [38—40]. Yet, these approaches operate at the trajectory level and do not
address performance drops stemming from changes in the surrounding environment. Red-teaming
techniques have recently been proposed to estimate a policy’s sensitivity to individual environmen-
tal factors and steer data collection accordingly [41]. However, this method does not model how
performance will evolve as new data are added. We close these gaps with factored scaling curves:
a task- and policy-aware framework that predicts performance gains as a function of additional data
for each environmental factor. By quantifying the marginal return of collecting more demonstrations
along each axis, our method provides principled, budget-aware guidance for prioritizing the most
impactful factor variations and thus accelerates real-world policy improvement.

3 Factored Scaling Curves for Guiding Imitation Data Collection

Consider the scenario where we have a pre-trained robot policy and observe insufficient performance
in a target domain. Gathering additional demonstrations for imitation learning can help bridge the
gap. We present a data collection strategy that can: (a) determine and prioritize factors for greatest
potential improvement, and (b) predict the effect of adding data for a specific factor — or combina-
tion of factors — on the policy’s performance in the target domain.

3.1 Problem Formulation

We consider imitation learning policies, either pre-trained (e.g., on [6-8]) or trained from scratch.
We assume access to a new set of training demonstrations D comprising of variations across N
environment factors 7 = { f1, fa, ..., fn }, denoted as

D =DyomUD1UDyU---UDy, (D

where Dy, is the set of demonstrations with all environmental factors in a nominal setting (e.g., no
distractors, nominal lighting and table texture), and D; contains all demonstrations with variations
of factor f; with respect to its nominal value. We denote |D;| as the number of demonstrations
available for factor f;. A policy trained on dataset D is denoted as 7(D), and is evaluated on a target
distribution £ of environments with factor variations unseen in D. The policy’s overall performance,
denoted S(m(D)), is defined as the expected value of a success metric (e.g., partial credit, binary
success) on the target distribution £. Our goal is to determine how to collect an additional dataset
AD, subject to a constraint on the number of additional demonstrations, i.e., |AD| < K, where K
represents a budget determined by time or data collection cost. The objective is to maximize the
performance of the new policy 7(D U AD), trained on the updated dataset:

AD = arg max S(m(DUAD)) st |AD| < K. 2)

The additional dataset can be partitioned into subsets corresponding to different factor variations:

AD =AD, UADy U---UADy. 3)



Our focus in solving (2) is to identify which factors to prioritize for data collection and how much
additional data to collect for them, i.e., determining |AD;|. While this formulation allows for any
demonstration collection rule, in this work all demonstrations will vary only one factor at a time.

3.2 Factored Scaling Curves

We propose factored scaling curves (FSC) to achieve the aforementioned desiderata. For exposition,
we define each curve for an individual factor, and provide extensions to multi-factor settings later
in the section. For each factor f;, starting with no corresponding demonstrations, i.e., D \ D;, we
incrementally add back n demonstrations §D}* C D;, and train a policy. Henceforth, denote D} :=
(D\ D;) U D} . The factored scaling curve ®; : N — [0, 1] maps the number of demonstrations of
factor f; to the policy’s overall performance on &:

Bi(n) = Epy o, [S(w(D?))] . (4)

At n = |D;|, the scaling curve represents policy
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Curve Fitting. We approximate the factored scaling curve by training policies 7(DF) at few
equally spaced values of k, and evaluating their performance. This yields points (k, S(7(D}))),
which are used to fit a power-law model of the factored scaling curve:

di(n)=1—a(n+|D\Dy)’, a>0,b<0, andn € N. (5)

Power laws can effectively model how performance scales with training dataset size in domains such
as language modeling [42] and imitation learning [36]. We fit power-law curves in log—log space
for numerical stability, following standard practice [43], and find that as few as four values of n are
often sufficient to obtain a reliable fit empirically. Fig. 2 illustrates the curve construction and its use
in predicting the policy’s performance if K additional demonstrations of the factor are gathered.

Proxy Metrics. Constructing scaling curves using real-world success rates S can be expensive
in terms of evaluation cost. To address this challenge, we consider other offline metrics M (e.g.,
embedding similarity [41, 44, 45]), which do not require evaluating the policies (DY) on hardware.
Generally, we define factored scaling curves as:

2.0 = Bopn, [M(x(P)| ©

The resulting performance of the policy trained with additional data is still evaluated according to
the gold-standard performance S in the real-world. We show experimental results using embedding-
space similarity, denoted FSC-Proxy, in Section 4.4.



Factor Combinations. Constructing factored scaling curves for each individual factor can be ex-
pensive in terms of computation and hardware evaluations. Below we discuss how factored scaling
curves can be adapted to combine multiple factors into a single scaling curve. We define Group-t
to be a disjoint partition of N factors into groups of size ¢; for example, Group-2 results in [N /2]
paired combinations. In contrast, t-wise refers to all (ZX ) combinations. To balance the expressivity
from t-wise and efficiency from Group-t, we consider the following options: i) varying individual
factors (“One Factor™), ii) 2-wise (“Pairwise”): all pairwise factor combinations which results in
(1;; ) = w curves, and iii) Group-2 (“Group”): a set of [ N/2] pairwise combinations. The
Pairwise setting requires more curves than One Factor but has greater expressive power, while
Group requires fewer curves with less expressive power.

3.3 Data-collection strategy

With the constructed curves, we now decide which factor(s) to prioritize and how many demos to
collect for each factor. For simplicity, we present the case of One Factor first. The predicted policy
performance after adding K demonstrations of factor f; is fi)z(|DL| + K ) We coarsely approximate
the slope of the scaling curve as
ok BID + K) - &(1Di))
K . @)
K

Based on Eq. (7), we consider three data collection strategies: (1) Top: Identify the top factor with
highest PX and allocate the entire budget to it, (2) Top-Half: Identify the top half of the factors
and allocate budget proportionally, and (3) All: Spread the budget over all factor combinations in

K
s 7 K
Next for Pairwise and Group, similar to the single factor case, we denote the two-factor dataset
D;; = D; U D; for factors f; and f;, and define the terms <i>ij and Pg analogously. The three data
collection strategies are defined similarly as with single factor. In the Group setting, the proportional
budget allocation strategy for factor combinations is:

proportion to the respective P/<. The proportional budget allocation follows: |[AD;| =

pPX
|AD| = =55 K, (®)
Zi/,j/ Pi’j/
with the budget allocated to the individual factors being half of the budget allocated to corresponding
factor combination according to Eq. (8). See Appendix A.2 for details on the Pairwise setting.

4 Experiments

We evaluate our proposed method, FSC (Factored Scaling Curves), alongside FSC-Proxy, which
builds FSCs using policy embedding similarity as an offline proxy metric, to address the follow-
ing questions: (1) Can our method successfully guide data collection under a fixed data budget to
maximize the policy performance? (2) How well do factored scaling curve extrapolations predict
performance with additional data? (3) How do choices of the prediction strategy and curve construc-
tion affect the performance and computation cost? (4) Can we construct scaling curves using proxy
metrics that do not require hardware evaluations while still effectively guiding data collection?

Environment Factors. We investigate eight factors — five visual (table texture, lighting, camera
pose, distractor objects, background) and three spatial (table height, object pose, robot initial pose).
Discrete factors (table texture, distractors, background) are drawn from four preset values, whereas
continuous factors are sampled uniformly. See Appendix B and Appendix C for full distributions
and visualizations.

Simulation setup. We study five simulation tasks in ManiSkill3 [46] on a Franka Panda robot:
Pick Place, Peg Insertion — Visual, Peg Insertion — Spatial, Pull Cube Tool — Visual, and Pull Cube
Tool — Spatial. Visual tasks vary the five visual factors, and spatial tasks additionally vary the three
spatial factors. All policies are trained with diffusion policy [47]. To obtain the factored scaling



curve and evaluation results, we evaluate each policy for roughly 4000 trials on different factor
values. More details can be found in Appendix B.

Real-world setup. We consider two task settings on a Franka Panda robot: (i) fine-tuning VLA,
where we use 7y as the base model [2] and study three tasks Fold Towel — Visual, Fold Towel —
Spatial, and Mouse in Drawer; and (ii) train-from-scratch on Pick Place with diffusion policy [47].
We collect training data following the L-shape strategy of Gao et al. [11], where each demonstration
varies exactly one factor. For visual experiments, we vary table texture, lighting, camera pose,
and distractors. We drop the background variation as we find it has negligible effect in policy
performance in our experiment setup. Fold Towel — Spatial and Mouse in Drawer additionally vary
object and robot poses. To fit the factored scaling curves and evaluate each policy, we run roughly
15 out-of-distribution trials per policy in which multiple factors are simultaneously varied beyond
the training distribution. Implementation and hardware details are given in Appendix C.

Baselines. We consider three baseline methods: (1) Equal: Collect an equal number of demon-
strations for each factor where we vary exactly one factor value when collecting demos; this is
equivalent to the L-shape strategy of Gao et al. [11]. Outperforming this baseline requires prioritiz-
ing the most influential factors. (2) Greedy: After evaluating the initial policy, we allocate the data
budget to the single factor with the lowest success rate. (3) Re-Mix: Following Hejna et al. [14], we
apply distributionally robust optimization to compute factor weights and construct the initial dataset
and collect data in proportion to those weights.

4.1 How well does FSC guide data collection?

Table 1: Evaluating FSC in simulation. We report the average policy success rate trained with additional
collected data. FSC consistently improves upon the baselines, delivering around 10% improvement on average.

K =20 K =100
Task FSC Equal Greedy Re-Mix FSC Equal Greedy Re-Mix
Pick Place 62.0 56.1 58.7 61.6 644 643 65.9 64.7

Peg Insertion - Visual 222 202 155 192 453 281 28.1 34.0
Peg Insertion - Spatial 455 438 42.0 317 579 495 52.7 44.1
Pull Cube Tool - Visual  68.4  62.7 64.3 619 835 56.6 83.1 28.7
Pull Cube Tool - Spatial  76.3  57.7 73.3 50.5 834 785 62.5 64.5
Average 549 481 50.8 450 669 554 58.5 47.2

Simulation results are summarized in Table 1. If not else specified, we adopt the Group construction
on the z-axis and the Top allocation strategy for the FSC result, which Section 4.3 later identifies as
the best balance between performance and data-collection cost. Results are reported under two data
budgets: a small budget (X = 20) and a large budget (X = 100). FSC outperforms all baselines in
every task except one cell (Pick Place, K = 100), where it is a close second to Greedy, which is
otherwise the best-performing baseline on average. In the challenging, long-horizon task Pull Cube
Tool — Visual, FSC delivers around 10% improvement over all baselines at K =100, confirming that
the factored scaling curves extrapolate well beyond their fit range and guide data collection effec-
tively. We show visualizations of factored scaling curves in Section 4.2 and Appendix A.5. Notably,
performances of Equal and Greedy are highly inconsistent across tasks, and Re-Mix remains con-
sistently weak, whereas FSC provides stable gains throughout. For example, in the Pull Cube Tool —
Spatial task, Equal performs poorly when K = 20 but has reasonable performance when K = 100.
However, in the Peg Insertion — Visual tasks, this trend is reversed. The same observation holds for
another heuristic baseline Greedy, where it consistently has unsatisfactory performance in the Peg
Insertion - Visual task and inconsistent performance in Pull Cube Tool - Spatial.

Real-world experiments. Fig. 3 shows that real-world results closely match findings in simula-
tion: FSC outperforms every baseline by a wide margin. In the fine-tuning VLA setting, FSC raises
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Figure 3: Evaluating FSC in the real world. We visualize the task rollouts and report the average policy
success rate trained with additional collected data. For pick-place task, we train the policies with diffusion
policy. For all other experiments, we obtain policies by fine-tuning 7. FSC achieves the best performance
in all tasks, achieving up to 26% more improvement over all baseline methods. Compared to the zero-shot
setting, fine-tuning o with FSC yields up to 30% success rate improvement. FSC-Proxy achieves nearly the
same high success rate as FSC while eliminating the need for any on-hardware policy execution.

success on demanding long-horizon tasks —Fold Towel and Mouse in Drawer — by up to 25% and
21% respectively over the strongest baseline. Increasing the budget from K = 20 to K = 100
brings great gains for FSC, whereas Equal and Greedy improve only marginally or even degrade.
A similar pattern emerges in the Pick Place task trained with diffusion policy, where FSC achieves
up to a 26% advantage. These results confirm that FSC not only guides data collection effectively
but also generalizes across real-world settings of varying task difficulty and policy type.

4.2 How well do factored scaling curves predict performance with additional data?

We visualize our factored scaling curve for the real-world fine-tuning tasks in Fig. 4. As we adopt
the Top strategy for data collection, we are essentially collecting data for the factor with the highest
expected improvement. In Mouse in Drawer, the (Table Texture, Lighting) curve offers the highest
expected improvement, so we allocate the entire additional data budget to that factor pair (blue stars
at n=80 and n=160, matching the K=20 and K=100 settings). Even though the curve is fitted
only on n=0-60, its extrapolation matches the actual performance almost perfectly. The same holds
for Fold Towel — Spatial: adding data for (Camera Pose, Distractor) improves success rate exactly
as predicted. This accuracy underpins FSC’s large margins over baselines. Furthermore, FSC is
robust to real evaluation noise. In Fold Towel — Visual an outlier at n=60 slightly distorts the fit,
yet FSC still selects the right factor; factor combinations are helpful here since they widen the data
range and improve the signal-to-noise ratio.

In Fig. 4, the pie plots beside each curve show weights allocated to each factor. FSC allocates the
entire budget to the best factor group and is then split evenly inside that group (e.g., 50% each to table
texture and lighting). Greedy often misallocates budget to insignificant factors. Re-Mix consistently
performs poorly because it either learn near-uniform weights or concentrate on irrelevant factors —
it produces near-uniform weights for the Fold Towel - Spatial and Fold Towel - Visual task, while not
prioritizing the important factors enough (i.e., lighting and table texture) in the Mouse in Drawer
task.

Interestingly, the pre-trained g is still vulnerable to visual perturbations. Across all three tasks,
additional demonstrations that vary visual factors deliver the greatest improvements in success rate.
In contrast, spatial robustness depends more on the diversity than the quantity of spatial data: enlarg-
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Figure 4: Visualizing factored scaling curves for real world fine-tuning 7, experiments. Solid lines are
factored scaling curves we construct based on the initial dataset, and dashed lines are the extrapolations that
predicts how policy performance change with additional factor data. Based on the Top strategy, FSC suggests
picking the curve with the highest slope, shown in blue (left), purple (middle) and purple (right). Factored
scaling curves can accurately predict how policy performance changes with additional factor data, thus able
to provide informed data collection strategies. We also visualize how different methods allocate data collection
budget to the factors in the top pie charts.

ing the set of robot- or object-pose variations produces little further gain, indicating that the initial
dataset already captures spatial variation well. This pattern matches the findings of Xue et al. [48].

4.3 What is the best curve construction choice and prediction strategy?

Table 2: Comparisons of different curve construction choices. The Group setting achieves high performance
with lowest computational costs.

K =20 K =100
Task One Factor Pairwise Group Equal One Factor Pairwise Group Equal
Pick Place 69.5 68.6 62.0 56.1 73.2 78.8 64.4 64.3
Peg Insertion 224 26.0 22.2 20.2 41.9 38.1 45.3 28.1
Pull Cube Tool 51.1 75.5 68.4 62.7 53.0 79.5 83.5 56.6

We provide ablation studies on different design choices of the curve construction. Because the
cost of Pairwise grows quadratically with IV, we test it only on the tasks with visual factors, where
N = 5. InTable 2, we find that in K = 20 setting the performance drop of using Group compared to
Pairwise is small, while One Factor is generally not good due to the small curve construction range.
At K = 100, Group beats Pairwise except in the Pick Place task. This is likely because Group
heuristically filters out unrelated factor pairs based on human priors, whereas Pairwise becomes
vulnerable to a single poorly-fitted curve among many. Furthermore, Group needs only 12 policies
in this scenario, offering an order-of-magnitude lower cost while retaining the full performance
advantage over the baselines.

We also ablate the prediction strategies we use, see Table 3. Among tasks with only visual factors
(N = 5), Top and Top-Half are the same as we pick {%J factors for Top-Half strategy. Top
delivers the best results in the last three tasks, where one factor group clearly dominates, matching
the large gaps visible in their factored scaling curves (see Appendix A.5). However, in Pick Place,
factor importance is nearly uniform (Fig. 7); here the All rule prevails because over-focusing on
the top group hurts coverage. Hence, in practice, we can adopt a simple decision strategy: If the



Table 3: Ablation of data collection strategies. All the results are obtained using Group strategy for curve
construction. We find that Top generally performs the best, in both simulation tasks and real world tasks.

K=20 K=100
Task Top Top-Half All Top Top-Half All
Pick Place 62.0 62.0 67.5 620 62.0 70.2

Peg Insertion - Visual = 22.2 22.2 295 453 45.3 41.8
Peg Insertion - Spatial ~ 45.5 40.8 39.0 579 47.5 50.3
Pull Cube - Visual 68.4 68.4 553 835 83.5 49.8
Pull Cube - Spatial 76.3 70.6 69.5 834 75.3 79.1
Mouse in Drawer (mg) 58.3 333 31.3  66.7 29.2 33.3

curves show similar gains for all factors, use All; if one factor group stands out, use Top. Additional
prediction-rule ablations under varying initial set sizes are reported in Appendix A.

4.4 How effective is FSC constructed with proxy metrics?

We additionally investigate the construction of factored scaling curves without evaluating trained

policies on hardware. Specifically, we explore the policy embedding similarity [41] as a proxy for

the real-world success rate for guiding data collection. Given policy 7 and two policy inputs x; and

xj, we define the embedding similarity c, to be the cosine similarity between the embeddings:
Gr(4) - Pn(w;)

mw\Lgy Lj) = 9
e (@ 23) = T e T TomGa )] ®

where ¢(-) is the policy embedding, e.g., the output of the vision encoder.

We define the training dataset Dy, = {z;} ZV:“’l that varies in environment factors, and an evaluation
(holdout) dataset Deyy = {mz}fvze{” collected in the target environment distribution. Both datasets
contain only the initial observation and thus collecting D, does not require rolling out trajectories
on hardware. We compute the embedding similarity between an input x; € Deyy and Dipin:

cr (@i, Diain) = max  cx (x4, 5), (10)

T 5 € Dyain

which is maximized when there exist points in Dy, that are similar to x;. A generalization of
Eq. (10) is a k-nearest-neighbor variant, which averages the k largest similarities between x; and
Dyain. After obtaining all ¢, (2, Dyain), we normalize them to [0, 1]. Then, we define the policy
embedding similarity ¢, as the embedding similarity between the two datasets Dyy,in and Deyy
averaged over instances in Deyqy:

_ C(Jii, Dtrain)
= i, Duain) (11)
GZD |Deva1|

T eval

Intuitively, higher policy embedding similarity ¢,, indicating consistent behavior of the policy be-
tween environments where the data is collected and those where the policy is evaluated, should
correspond to higher performance at the target environments. After obtaining the embedding simi-
larity ¢, for each policy 7, we construct the factored scaling curve with it and use the Top strategy
to collect data, following Algorithm 1 and Algorithm 2.

We report results for Diffusion Policy (DP) [47] and 7 [2]. For DP, we use the output feature from
the vision encoder (ResNet-18 [49]) as our embedding ¢(-). We tabulate results for DP in Table 4,
and show the result for real-world Pick Place task in Fig. 3. We use k¥ = 1 for FSC-Proxy for
the k-nearest-neighbor step, and ablate other choices of k£ in Appendix A.3. Generally, we find
that FSC-Proxy achieves performance comparable to FSC, sometimes even surpassing it, while
consistently outperforming the baseline methods. Our results provide preliminary evidence on the
effectiveness of using embedding similarity as a surrogate metric for guiding data collection in
place of success rates from expensive real-world evaluations.



Table 4: Success rates (%) on simulation tasks when guiding data collection with factored scaling curves built
from embedding similarity of diffusion policy (FSC-Proxy). For Peg Insertion and Pull Cube Tool, we show
results with spatial factors. For both small (X = 20) and large (X = 100) data-collection budgets, FSC-Proxy
matches or surpasses the original FSC and consistently outperforms the baselines.

K =20 K =100
Method Pick Place Peg Insertion Pull Cube Tool Pick Place Peg Insertion Pull Cube Tool
Equal 56.1 43.8 57.7 64.3 49.5 78.5
Greedy 58.7 42.0 73.3 65.9 52.7 62.5
Re-Mix 61.6 31.7 50.5 64.7 44.1 64.5
FSC-Proxy 70.9 452 73.5 74.1 533 73.4
FSC 62.0 45.5 76.3 64.4 57.9 834

For 7y, we define ¢(-) to be the attention weights from the final denoising step of the flow-matching-
based action expert [2]. We take the mean weight over each attention head and action token so that
the embedding has the same size as the VLM sequence length. We define Dy, and Dey, in the
same way as DP. As shown in Fig. 3, FSC-Proxy successfully prioritizes the same factor for data
collection as FSC for the Fold Towel - Spatial and Mouse in Drawer task, achieving the highest
success rate. This further shows that embedding similarity is an effective surrogate metric for guid-
ing data collection for pre-trained VLA models. We additionally visualize the correlations between
embedding similarity and real success rate and ablate other embedding choices in Appendix A.3.

5 Conclusions

We propose Factored Scaling Curves, which quantify how a policy’s performance improves as ad-
ditional data is collected involving different factor variations. We show that factored scaling curves
can be reliably extrapolated to make predictions about how policy performance evolves if we col-
lect more data for the factor. We leverage this property to propose a principled way to guide data
collection, where we decide priority of the factors to collect data for based on the slopes of their
respective factored scaling curve. We empirically study different ways of constructing the factored
scaling curve, and propose varying factors in groups to strike a strong balance between evaluation
cost and performance. We also study different ways of allocating the data budget, and find that
allocating the entire budget to the most promising factor(s) performs best. We study a wide range
of simulation tasks and real-world tasks, including ones where we train from scratch and fine-tune a
pre-trained VLA. Overall, our method can achieve up to 26% success rate improvement compared
to state-of-the-art data collection methods.

Limitations and Future Work. We discuss the limitations of FSC and outline future work to
address them. Although we have shown that embedding-space similarity provides a strong proxy for
real-world success—yielding curves that closely track and effectively guide data collection—curves
built with the actual success rate remain marginally more predictive. This superior fidelity comes
at a cost: obtaining real-world success rates demands on-hardware evaluation and thus substantial
human effort (roughly 10-20 trials per policy—factor pair). Future research should therefore focus
on further boosting the reliability of purely offline metrics—such as embedding-space distance or
simulation success—so that practitioners can confidently construct scaling curves without incurring
expensive physical evaluations. In the meantime, users can choose between lower-cost embedding
metrics and higher-accuracy real success rates, depending on their resource constraints and precision
requirements.

Second, as FSC requires extrapolating the existing curve, the prediction at large K (large data
budget) can be less precise as shown in Table 7. For such settings, a more adaptive version of
FSC might be useful as the practitioner collects additional data and re-evaluates the policy before
deciding on the next factors to collect data with.

10



Lastly, in this work we primarily consider settings where we use a pre-trained policy or collect data
from scratch. It would be interesting to extend FSC to the retrieval setting [50, 51] where a large
dataset is given and factored scaling curves can help determine which factors of data are more useful
to policy performance. FSC may also be applied to pre-training in this setting.
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A Additional Results

A.1 Algorithms

We present the construction of factored scaling curves and the subsequent data collection strategies.
We provide pseudocode for curve construction and data collection strategy in the Group setting of
pairs of factors. For this setting, curve construction requires the following inputs. First, a policy
parametrization 7 denotes the policy (e.g., diffusion policy [47] and 7 [2]) trained on varying
amounts of data as a part of scaling curve construction. Second, a set of training demonstrations D
to guide further data collection. Third, a set of factor combinations Fg,, specified by the Group
setting, which divides N factors into [N/2] factor pairs. We construct a factored scaling curve
for each factor combination. Finally, we require a metric S to evaluate the policy on a fixed set
of evaluation environments. In addition to these inputs, we set a hyperparameter m which sets the
number of points used to construct the scaling curve.

Algorithm 1 Factored Scaling Curves (Construction)

Require: Policy parametrization 7, demonstrations D, factor combinations Froup, metric S, hyper-
parameter m
Ensure: A set of factored scaling curves {@” | {fi, i} € Faroup}, one for each factor combination.
1: for each factor combination { f;, f;} € F, group dO

2: Factor combination dataset sizes for training N = {% |ie{l,...,m}}

3 for k € N do

4 Assemble training dataset ij = (D\D;;)U 5ij

5 Train policy m(D};)

6: Record policy performance S (W(ij))

7 end for

8 Construct ®;; by fitting points {(k, S(m(D};)))} rear according to a power-law (Eq. (5)).
9: end for

Following Algorithm 1, we can use the constructed factor scaling curves to determine a data col-
lection strategy for some data budget . We consider three strategies for splitting the data budget
amongst factor combinations: Top, Top-Half, and All.

Algorithm 2 Data collection guided by Factored Scaling Curves

Require: Factored scaling curves {‘i)”} factor combinations Fyroup, factors F, data budget K
Ensure: Recommendation of additional dataset size | AD;| for each factor f;
: Initialize |[AD;| = 0 for each factor f; € F
for each factor combination { f;, f;} € Feroup do
Pfj( <+ Approximate the slope of FSC <i)¢j using Eq. (12)
end for
Rank all pairs in Fgroup by slope PK in descending order
Gine = set() > To store factor combinations selected for data allocation
if strategy is Top then
Gine < {(i*,5%)}, where PY. = max;; P

else if strategy is Top-Half then

A A R T

°

10: Gine < Set of top [|Feroup|/2] pairs

11: else > strategy is All
12: Ginec < F; group

13: end if

14: for each factor combination {f;, f;} € Gin. do

15: Allocate | AD;;| proportionally using Eq. (8).

16: |AD;| < |AD;| + |AD;;| % > Divide pairwise allocation in half
17: end for '
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A.2 Data Collection Strategies for Factor Combinations

The two-factor analog to the factor dataset is denoted by D;; = D; U D; for factors f; and f;, and
Dy, follows as D}y == (D \ D;;) U (6D U §D;” ), where n; + n; = n and are proportional to

the sizes of D; and D;. We choose |D;| = %,

importance. The combination of f; and f; is denoted f;;, and the scaling curve is referred by (Abij.

for all ¢, which forms a uniform prior on factor

Recall that K is the total budget allocated for new demonstrations. We present the data collection
strategy for factor combinations (i.e., Pairwise and Group), which covers the three methods pre-
sented in Section 3.2. For two-factor pairs, we let G denote the set of all index pairs. For each factor
combination, the predicted policy performance after adding K demonstrations is i)ij(\Dij\ + K )
We coarsely approximate the slope of the scaling curve as

pic . 2iillPy| + K) — @4i(|Dy5])

1] K

Based on Eq. (12) we consider three strategies that vary in index inclusion set G;,,.: (1) Top: Iden-
tify the factor combination f;«;« with fastest predicted performance gain Pffj* and set G =
{(i*,7%)}; (2) Top-Half: Identify the top half of the factor combinations according to Pg and set
Ginc to contain half of the two-factor indices; (3) All: Spread the budget over all factor combinations
and set G;,,. = Go. New demonstrations are allocated by:

(12)

. pPK
|AD;| = 2]7%{ K, (13)
2 Z:(i’~,j’) Pi’j’
and |[AD;| = 0 if no pair in G;,. contains index i. We evaluate each of these strategies in the

subsequent experiments.

A.3 Further Analysis on Embedding Similarity for Guiding Data Collection

- Fold Towel — Visual —

ﬁ Fold Towel — Spatial 1 h Mouse in Drawer ﬁ
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Figure 5: Expected improvement for mo on three task settings using the Attention Weights from the last
denoising step: Camera Pose — Distractor (CP-D), Table Texture — Lighting (TT-L), and Robot Pose — Object
Pose (RP-OP). Cosine Similarity projections are normalized to have the same expected value as Expected
Improvement. Cosine similarity predicts the top-ranked expected improvement for Fold Towel (CP-D) and
Mouse in Drawer (TT-L).

In addition to attention weights, we further investigate another embedding option ¢(-) for 7y [2]:
the latent action vector after the first denoising step. We analyze the correlation between different
embedding options and real success rate. We report the results for Attention Weights in Fig. 5
and summarize two important findings here. Attention weights successfully predict the first ranked
factor in Fold Towel — Spatial and Mouse in Drawer, offering some evidence that they may be used
as a proxy for the Top data collection strategy—for example, if real data is scarce—when factors can
be clearly differentiated. We additionally conclude that while the attention weights may not always
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Figure 6: Expected improvement for 7o on three task settings using the Latent Action from the first denoising
step: Camera Pose — Distractor (CP-D), Table Texture — Lighting (TT-L), and Robot Pose — Object Pose (RP-
OP). Cosine Similarity projections are normalized to have the same expected value as Expected Improvement.
Cosine similarity predicts the bottom-ranked expected improvement for Fold Towel (RP-OP) and Mouse in
Drawer (RP-OP).

report the correct ranking of factors (for example, the two factors of Fold Towel — Visual and the
lesser two factors of Fold Towel — Spatial), the relative ratio of factors remains accurate across all
experiments, which indicates a close match to the data ratio predicted by the All strategy. In Fig. 6,
we report results for the Latent Action and conclude that it may be used to filter out the last ranked
factor in Fold Towel — Spatial and Mouse in Drawer. We observe a similar trend in the ratio between
factors, which suggests using the All strategy.

We then ablate the different choices of k, where k£ denotes the value used in the k-nearest-neighbors
step. As shown in Table 5, performance is similar across different k& values, with FSC-Proxy
(k = 1) performing slightly better in the K = 20 setting and FSC-Proxy (k = 5) perform-
ing slightly better in the K = 100 setting. This indicates that FSC-Proxy is not sensitive to the
hyper-parameter k, and that £ = 1 or £ = 5 are generally good choices depending on the dataset
size.

Table 5: Ablations on different choices of k for FSC-Proxy used for k-nearest-neighbor filtering. For Peg
Insertion and Pull Cube Tool, we show results with spatial factors. Overall, FSC-Proxy exhibits comparable
performance under different & in most settings, indicating that it is insensitive to the choice of hyperparameter
k.

K =20 K =100
Method Pick Place Peg Insertion Pull Cube Tool Pick Place Peg Insertion Pull Cube Tool
FSC-Proxy (k = 1) 70.9 452 73.5 74.1 53.3 734
FSC-Proxy (k = 5) 68.6 45.5 41.7 73.2 55.0 86.6
FSC-Proxy (k = 10) 69.9 441 66.5 71.5 56.2 79.2

A.4 Ablating Different Initial Dataset Size and Prediction Horizon

We further investigate whether FSC maintains strong performance under different initial-dataset
sizes. In Table 6, we show that when the initial dataset contains 300 demonstrations—double the
150-demonstration setting reported in Table 1—our method attains performance comparable with
the baseline. This result is unsurprising, as task performance appears to have already saturated in
this data regime.

In Table 7, we further examine how FSC performs under different initial dataset size in another
task, as well as how accurately FSC predicts policy performance over an even longer horizon. We
evaluate settings with up to X' = 500 additional demonstrations, starting from an initial dataset
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Table 6: Ablation on different initial dataset size on the Peg Insertion - Visual task. Initial dataset contains 300
demos.

Top All Equal
K=20 584 649 642
K =100 493 534 525

of 480 demonstrations (as opposed to the 240-demonstration setting used in the main results). In
the low-data regime (K = 20), Top achieves the best performance. As the data budget increases,
All becomes superior, likely because the factors emphasized by Top have already saturated, while
All distributes additional demonstrations across all factors according to their estimated importance
instead of exploiting only the top combination. Interestingly, at X' = 500 the performance of All
falls by roughly 10%. We hypothesize that this drop stems from performance saturation in this
regime, compounded by substantial evaluation noise—particularly salient because the peg-insertion
task demands high precision.

Table 7: Ablation on different initial dataset size on the Peg Insertion - Spatial task. Initial dataset contains
480 demos.

Top Top-Half All Equal
K=20 671 64.1 65.6 685
K =40 662 63.4 689 634
K =100 623 62.8 724  56.0
K =250 554 553 69.1 o614
K =500 56.5 48.4 594  63.0

A.5 Additional Curve Visualization

In this section, we visualize the factored scaling curves for all experiments.
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Figure 7: Factored scaling curves for the simulation Pick Place task.
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Figure 8: Factored scaling curves for the simulation Peg Insertion - Visual task.
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Figure 10: Factored scaling curves for the simulation Peg Insertion - Spatial task.
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Figure 12: Factored scaling curves for the real Pick Place task. For real world tasks, we do not obtain the
ground truth test points for visualization.

B Simulation Experiments

All experiments are done in Maniskill3 [46] on a Franka Panda robot.

B.1 Task and Factor Description

We visualize all simulation tasks in Fig. 13. To collect training data, we sample continuous-factor
values according to Table 8. Note that robot pose and table height are varied only in experiments that
involve spatial factors. For tasks with two cameras, we only vary the pose of the third-person view
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(a) Pick Place (b) Peg Insertion (¢) Pull Cube Tool

Figure 13: Illustrations of simulation tasks.

camera. The object-pose range shown in Table 8 is used for all data except the object-pose-variation
subset, for which we extend the range by an additional 25%.

For table-texture and background variations, we draw four instances from a fixed texture dataset.
We also prepare four sets of distractors for the distractor-factor variation, each set containing two
objects (e.g., eggplant, cup, cucumber). All visual factors are illustrated in Fig. 14.

Table 8: Range for each continuous factor in meters for simulation tasks.

Factor Parameters Pick Place  Peg Insertion  Pull Cube Tool
X-position [-0.2,0.2] [-0.04,0.04] [—0.04,0.04]
Manipulated object pose Y-position [-0.2,0.2] [-0.04,0.04] [-0.08,0.08]
Yaw - [-0.13,0.13] -
X-position [-0.15,0.15] [-0.04,0.04] [-0.04,0.04]
Goal object pose Y-position [-0.2,0.2]  [~0.04,0.04]  [~0.08,0.08]
Yaw - [~0.13,0.13]  [~0.13,0.13]
Eye-X [—0.05,0.05] [~0.025,0.025] [~0.05,0.05]
Camera position Eye-Y [-0.1,0.1]  [-0.025,0.025] [—0.05,0.05]
Eye-Z [~0.1,0.1]  [~0.025,0.025] [—0.05,0.05]
Robot pose Initial joint angles - [—0.015,0.015] [—0.01,0.01]
Table height - - [—0.025,0.025] [—0.025,0.025]

Pick-Place: The robot must pick up a round toy tomato and place it onto a metal plate. Success
is defined as the tomato is within 5¢m to the center of the plate. For this task, we collect training
data by replaying real-world trajectories of the real Pick Place task. We use two 192 x 192 RGB
cameras: one mounted on the wrist and one positioned off-table, pointing at the table center. The
initial dataset contains 150 demonstrations, with 30 demos per factor.

Peg Insertion: The robot must pick up a rectangular peg and insert it into a hole in a box, requiring
high precision. Success is defined as half of the peg is inserted into the hole. Two 256 x 256 RGB
cameras are used: a wrist camera and a third-person-view camera positioned off-table, pointing at
the table center. We adapt this task from the ManiSkill3 codebase [46] and use a scripted policy to
collect data. For the visual task, the initial dataset includes 150 demos (30 per factor); for the spatial
task, it includes 240 demos (30 per factor).

Pull Cube Tool: The robot must first pick up an L-shaped tool and then use it to pull a cube closer,
beyond its unaided reach. Success is defined as pulling the cube to within 45, cm of the robot base.
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Figure 14: Visualization of simulation environment visual factor variations.
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One 192 x 192 RGB camera is placed off-table, pointing at the table center. We adapt this task
from the ManiSkill3 codebase [46] and use a scripted policy to collect data. For the visual task, the
initial dataset contains 150 demos (30 per factor); for the spatial task, it contains 240 demos (30 per
factor).

B.2 Policy Implementation Details

All policies are trained with Diffusion Policy [47]. We use ResNet-18 [49] as our vision encoder.
Each policy undergoes 50000 gradient updates with a fixed batch size of 64, yielding identical
computational cost across datasets of different sizes. RGB observations are augmented with standard
color-jitter during training. A complete list of hyper-parameters is provided in Table 9.

The robot state is an 8-dimensional vector comprising the seven joint positions and a single gripper
state. Actions are specified as 8-dimensional absolute joint-position commands sent to a absolute
position controller.

Table 9: Hyper-parameters of simulation diffusion policy.

Model Dimension Dim Mults Time Embedding Dimension History Steps Horizon Action Steps

128 [1,2,4] 128 1 16 8

B.3 Evaluation Details

Each policy is evaluated on ten discrete settings per factor, different from the training settings. For
every setting we execute 60 trials with distinct initial states, resulting in /N x 10 x 60 rollouts—3000
trials in the visual-factor regime and 4800 trials in the full-factor regime. Reported success rates are
the mean over all rollouts.

C Real Robot Experiment

C.1 Hardware Setup

We use a Franka Panda robot for our real robot experiment. We use Logitech C920 webcam as
our third person camera, and RealSense D405 for the wrist camera. Both cameras use resolution
192 x 192. We use a Meta Quest 2 VR headset for teleoperation to perform data collection.

C.2 Task and Factor Description

For training, we sample four pre-specified camera poses for the third-person camera, as visualized in
Fig. 15. We use four textured and colored cloths to set up table texture variations. We use four sets
of distractors for the distractor factor variation, where each set of distractor contains two objects,
e.g., bread, eggplant, grape, carrot, etc. For spatial factor experiments, robot initial joint position is
drawn from [-0.015,+0.015] around its nominal joint positions. Table height is omitted because it
is difficult to change in our real world experiment setting. We increase the range of object pose by
25% more for object pose variation. We visualize the visual factor variations in Fig. 15.

Pick place: the robot needs to pick up a round tomato and place it into a metal plate. The tomato
position and the plate position and randomly set in a 40cm x 40cm grid. The rotation of the plate is
randomly set across training demonstrations and evaluations. We consider an initial dataset size of
120 demos, where we have 30 demos for each factor.

Fold Towel: the robot needs to grasp the end of a rectangular towel and fold it in half across the
line bisecting the longer side. We collect training data with the towel position randomly set in a
5cm x bem grid and rotation between 30° to 60° counterclockwise relative to the vertical axis. For
Fold Towel - Visual, we consider an initial dataset size of 120 demos, where we have 30 demos for
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Figure 15: Visualization of real environment factor variations.

each factor. For Fold Towel - Spatial, we consider an initial dataset size of 180 demos, where we
have 30 demos for each factor.

Mouse in Drawer: the robot needs to open a drawer, pick up a mouse, place it in the opened drawer,
and close the drawer. We collect training data with drawer and mouse positions each randomly set
within ~ 10 cm and rotations within +10° of a fixed initial setup. We consider an initial dataset size
of 180 demos, where we have 30 demos for each factor.

C.3 Policy Implementation Details

For Pick Place task, we use diffusion policy [47] to train all the policies. We follow the same color
jitter augmentation protocol and hyper-parameters in Table 9.

For Fold Towel and Mouse in Drawer task, we fine-tune 7y on our collected dataset. Specifically,
we fine-tune from 7y — base model. We freeze the ViT and the language model, and only train the
action expert. We train all policies for 10,000 gradient steps for the same batch size 32, resulting in
an equal training cost regardless of dataset size.

We use absolute joint position control for all the tasks. The input to the policy is camera images and
a 8-dimensional state vector, consisting of robot current joint angles and gripper state. The output is
a 8-dimensional vector, consisting of robot target joint angles and target gripper state. The control
frequency is 15 Hz.
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C.4 Evaluation Details

We evaluate each policy in difficult out-of-distribution cases where we randomly draw values for
each f; different from the training environment.

For the Pick Place task, we evaluate each policy on 10 factor value combinations, 2 trials per com-
bination, for 20 trails in total. We assign 0/1 success.

For Fold Towel task, we evaluate each policy on 4 factor value combinations, 3 trials per value,
for 12 trails in total. We assign partial credit, where 0 stands for complete failure, 0.25 stands for
underfold/overfold by more than 5 centimeters or more than 20°, 0.5 stands for underfold/overfold
by less than 5 centimeters and less than 20° but more than 3cm or 5°, and 1 for complete success.

For Mouse in Drawer task, we evaluate each policy on 6 factor value combinations, 3 trials per
value, for 18 trails in total. We assign 0 for failing to open the drawer or pick up the mouse, 0.25 for
successfully picking up the mouse and failing to put in the drawer, 0.5 for successfully putting the
mouse into the drawer but failing to close the drawer, 1 for complete success.

The rollout is terminated early if the robot collides with the table or enters any other hazardous state,
and the trial is marked as a failure. Each rollout is capped at 600 environment steps; any trial that
exceeds this limit is recorded as a failure.

C.5 Baseline Details

Re-Mix. We train a discrete reference model with domain weights proportional to size and select
the best reference model by lowest validation loss. Next, we learn the domain weights by applying
robust optimization that minimizes worst case excess loss between the learned and reference policy.
We take the average value of the domain weights across robust optimization training and use it for
downstream policy training.
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Table 10: Hyperparameters: Remix

Group Hyperparameter Value

Dataloader batch size 32

Action Head (Reference) head type DDPMActionHead
model class ConditionalUnet1D

down features

mid layers

time features
kernel size

clip sample
diffusion timesteps
variance type

(256, 512, 1024)
2

128

5

1.0

100

fixed small

Action Head (Remix) head type DiscreteActionHead
model class MLP
hidden dims (512,512,512)
dropout rate 0.4
activate final layer True
layer normalization True
number of action bins 48
bin type gaussian
LR Schedule (optax.warmup_cosine_decay_schedule) initial value 1x1076
peak value 1x 1074
warm-up steps 1 000
decay steps 500 000
end value 1x 1076
Training / DoReMi domain-weight step size 0.2
smoothing 5x 1072
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